


◀ First ◀ Previous 2-12 of 27 <u>Next</u> ▲ Last

| <u>Reply</u>                                                                                                                                                   | Recommend                                                                                                                        | Message 2 of 27 in Discussion |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| From: SourceCodeOf_HumanGenome Sent: 4/22/2008                                                                                                                 |                                                                                                                                  |                               |  |
| I talked about the relationship between logical time and physical time,<br>when I discussed the principle of mathematical induction with one of my<br>friends. |                                                                                                                                  |                               |  |
|                                                                                                                                                                | t infinite number of operations do not take infinite<br>differently from physical time,<br>ear he claims that it will never end. | e logical time                |  |

| Reply                                                                                 | Vecommend               | Message 3 of 27 in Discussion |  |  |
|---------------------------------------------------------------------------------------|-------------------------|-------------------------------|--|--|
| From: 😎 Source                                                                        | Sent: 5/26/2008 9:22 AM |                               |  |  |
| I wrote wrong sentences as English in messages 1 and 2 because I was in a hurry then. |                         |                               |  |  |
| Today I will correct them.                                                            |                         |                               |  |  |
|                                                                                       |                         |                               |  |  |
|                                                                                       |                         |                               |  |  |
| <u>Reply</u>                                                                          | ecommend                | Message 4 of 27 in Discussion |  |  |
| From: 9 SourceCodeOf_HumanGenome Sent: 5/26/2008 6:00 Pt                              |                         |                               |  |  |
| By Rewriting Message 1, it follows that                                               |                         |                               |  |  |

Logic seems to include the notions 'before' and 'after' inevitably. For example, when we see 'p  $\Rightarrow$  q', we first consider p and after that consider q. We may consider q before considering p instead, but we must use at least one of the notions 'before' and 'after'.

but I dare to try criticizing its completeness.

| <u>Reply</u>                                                                                                                                                                                                                                                                                                                                                                  | Version Recommend       | Message 5 of 27 in Discussion |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|--|--|--|
| From: 10 Source                                                                                                                                                                                                                                                                                                                                                               | Sent: 5/26/2008 6:37 PM |                               |  |  |  |
| By Rewriting Message 2, it follows that                                                                                                                                                                                                                                                                                                                                       |                         |                               |  |  |  |
| I talked about the relationship between logical time and physical time<br>when I discussed the principle of mathematical induction with one of my friends.<br>Then I said that a set of an infinite number of operations takes no time as a logical time<br>differently from physical time,<br>hearing from him that a set of an infinite number of operations could not end. |                         |                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                               |                         |                               |  |  |  |
| <b>Reply</b>                                                                                                                                                                                                                                                                                                                                                                  | ecommend                | Message 6 of 27 in Discussion |  |  |  |
| From: 9 SourceCodeOf_HumanGenome Sent: 5/26/2008 7:20 PM                                                                                                                                                                                                                                                                                                                      |                         |                               |  |  |  |
| Seeing that the definition of 'p $\Rightarrow$ q'<br>(not p) or q                                                                                                                                                                                                                                                                                                             |                         |                               |  |  |  |
| does not include the notion of time at all,<br>It seems as if logic succeeded in eliminating the notion of time completely,                                                                                                                                                                                                                                                   |                         |                               |  |  |  |

 Reply
 Recommend
 Message 7 of 27 in Discussion

 From: SourceCodeOf\_HumanGenome
 Sent: 5/27/2008 7:38 PM

 According to the ordinary definition of 'p ⇒ q' (not p) or q, q is completely independent of p.
 If q is true, p ⇒ q even when q is independent of p.

 If q is true, p ⇒ q even when q is independent of p.
 I am not satisfied with this point.

 I wish I could define 'p ⇒ q' so that it represents a relationship between p and q.

| <u>Reply</u>                                                                                                    | Recommend                                                                     | Message 8 of 27 in Discussion |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|--|--|--|
| From: Tom: SourceCodeOf_HumanGenome                                                                             |                                                                               | Sent: 5/27/2008 8:04 PM       |  |  |  |
| I think of the logical relationship between a specific definition and a specific theorem                        |                                                                               |                               |  |  |  |
| as an ex                                                                                                        | as an example of the logical relationship represented by 'p $\Rightarrow$ q'. |                               |  |  |  |
| I would like to recognize the situation that taking the definition lets the |                                                                               |                               |  |  |  |
| as the definition $\Rightarrow$ the theorem.                                                                    |                                                                               |                               |  |  |  |
|                                                                                                                 |                                                                               |                               |  |  |  |
|                                                                                                                 |                                                                               |                               |  |  |  |
| <u>Reply</u>                                                                                                    | Recommend                                                                     | Message 9 of 27 in Discussion |  |  |  |
| From: Prom: Sent: 5/28/2008 11:49 AM                                                                            |                                                                               |                               |  |  |  |

To attain the purpose proposed in Message 8, let p be an independent variable and let q be a function of p. And let's write q = q(p).

Then we can write new definition of 'p  $\Rightarrow$  q' as follows.

**∀**p; (not p) or q(p).

Reply Recommend Message 10 of 27 in Discussion From: pourceCodeOf\_HumanGenome Sent: 6/2/2008 6:53 PM The condition of previous message seems to be too strong. How about the definition that q(p) is true not for all p but for a specific p? Recommend **Reply** Message 11 of 27 in Discussion From: mail SourceCodeOf\_HumanGenome Sent: 6/2/2008 7:08 PM As for a number value function, the equation:  $x=a \Rightarrow f(x)=b$ can be rewritten as  $\forall x; x = a \Rightarrow f(x) = b$ even by using the ordinary definition. So, new definition proposed at Messages 9 and 10 may not be necessary.

|                                                                                                                                                 |                                                                                    |                                                                                             | ı                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|--|--|
|                                                                                                                                                 | <u>Reply</u>                                                                       | Recommend                                                                                   | Message 12 of 27 in Discussion |  |  |
|                                                                                                                                                 | From: 😎 Source                                                                     | CodeOf_HumanGenome                                                                          | Sent: 6/2/2008 7:39 PM         |  |  |
|                                                                                                                                                 | That a definition $\Rightarrow$ a theorem may also not be intrinsically new.       |                                                                                             |                                |  |  |
|                                                                                                                                                 | For example, that the theorem:<br>[f+g]'(x)=f'(x)+g'(x)<br>follows the definition: |                                                                                             |                                |  |  |
|                                                                                                                                                 |                                                                                    | f'(x)≡df(x)∕dx                                                                              |                                |  |  |
|                                                                                                                                                 | can be e                                                                           | xpressed as follows using the ordinary definition o                                         | f '⇒'                          |  |  |
|                                                                                                                                                 |                                                                                    | sing the notion of definition.<br>∃f',g',h';                                                |                                |  |  |
|                                                                                                                                                 |                                                                                    | $df(x) \neq dx$ and $g'(x) = dg(x) \neq dx$ and $h'(x) = dh(x) \neq h \Rightarrow f'+g'=h'$ | ´dx and                        |  |  |
|                                                                                                                                                 | This is tri<br>abbrevia                                                            | vial from the famous point of view that a definition<br>tion.                               | is an                          |  |  |
| First 《 Previous 2-12 of 27 <u>Next</u> 》 <u>Last</u> 》 《 Return to Physical Logic 《 Prev Discussion Next Discussion 》 Send Replies to My Inbox |                                                                                    |                                                                                             |                                |  |  |
| Notice: Microsoft has no responsibility for the content featured in this group. <u>Click here for more info.</u>                                |                                                                                    |                                                                                             |                                |  |  |
| Try MSN Internet Software for FREE!         MSN Home   My MSN   Hotmail   Search         Feedback                                               |                                                                                    |                                                                                             | Feedback   Help                |  |  |

©2005 Microsoft Corporation. All rights reserved. Legal Advertise MSN Privacy